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TRANSIENT MOTION OF A FLOATING BODY HAVING A RECTANGULAR SHAPE

UDC 532.583I. K. Ten

The two-dimensional transient problem of a floating body having a rectangular shape in a fluid layer
of finite depth is considered. Vertical displacements of the body are specified. The problem is studied
within the framework of the linear theory of potential ideal incompressible flow. The fluid flow
equations reduce to an infinite system of Volterra integral equations of the second kind by the method
of decomposition of the flow region. The system obtained is studied and solved numerically by the
reduction method. A method of solving the problem for the flow velocity potential is proposed. The
distribution of the hydrodynamic pressure and force acting on the body is determined.

Introduction. The behavior of a floating body is a classical problem of ship hydrodynamics. At present,
it has become important in connection with the design of floating airfields and space rocket launching pads. Work
on these buildings is reasonable only when their displacements are small.

Smallness of the departure of a floating body from the equilibrium position makes it possible to study body
motion within the framework of the linear theory of potential ideal incompressible flow. In linear theory, the
boundary conditions are linearized and extended to the equilibrium position of fluid free boundary and surface of
the floating body. In particular, it is assumed that in calculations of the hydrodynamic forces acting on the body,
changes of the wetted part can be ignored. Despite of the adopted simplifications, the problem remains rather
complex because the shape of the immersed part of the body is not necessarily canonical; the hydrodynamic forces
depend on fluid depth and the history of the process; the fluid flow is described by the solution of the boundary-value
problem for the velocity potential in a region of complex shape with mixed conditions on its boundary; within the
framework of linear theory, singularities of the velocity field can arise on the lines of change of the type of boundary
condition and at the angular points of the body surface.

The problem can be solved only by numerical methods, but in constructing an adequate algorithm, one
should allow for features of fluid flow and body motion.

There are two methods for constructing a solution of the problem considered. The first method (frequency-
domain method) [1] uses the Fourier transform over time, and a new parameter — frequency — appears in this
case. The final solution is obtained using the inverse Fourier transform. The second method (time-domain method)
is used to solve the transient problem itself. A drawback of the second method is that to determine unknown
quantities, one need to know the entire history of the process. This can increase the computation time considerably.
The error of the initial stage of calculation increases during the entire calculation process. At the same time, when
using the first method, it is necessary to solve a large number of problems for various values of frequency.

Interest in the development of the second method has recently increased. The Green function is constructed
on the basis of the fundamental solution of the Laplace equation in the flow region, and the problem reduces
to integral equations on the boundary of the region. The work of Cummins [2] played an important role in the
development of this method. Johansson [3] performed a comparative analysis of the method proposed in [2] and the
method of solving the problem in the range of frequencies using as an example a vertical circular cylinder floating in
a fluid of finite depth. A large number of papers have been devoted to the solution of the problem of a floating body
using the method of boundary integral equations. Watanabe [4] studied the interaction of a fluid and a floating thin
elastic plate acted upon by a point load (model of floating airfield landing) works. Duan and Dai [5] determined
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Fig. 1

the velocity potential for a floating body with oblique side walls. Xia and Wang [6] proposed a variational method
for solving the problem of a floating prolate body.

In the method of boundary integral equations (boundary-element method) the infinite region is replaced by
a bounded region. To increase the accuracy of results, besides decreasing the grid cell, it is necessary to extend
the computation domain, which increases the computation time considerably. In the present paper, we propose a
method for solving the problem in a two-dimensional formulation.

Formulation of the Problem. The transient problem of behavior of a floating body in a fluid layer of
depth H is considered. The body has the shape of a prolate rectangular parallelepiped. The bottom is considered
even, and the draught of the body is d′. The fluid is ponderable, ideal, and incompressible, and its flow is potential.

In the case of a prolate body (the transverse dimensions of the body are much larger than the longitudinal
dimensions) it is possible to use the theory of flat sections [1]. The coordinate system is located so that its origin
is at the level of the unperturbed fluid surface, the Oz′ axis passes through the center of gravity of the body, and
the Oy′ axis is directed along the body (Fig. 1). Then, in each section y′ = const, the velocity potential Φ′ can be
treated as a function of the variables x′, z′, and t′.

Let a rectangular body having length 2L′ and draught d′ perform specified vertical displacements z′ = ξ′(t′)
of small amplitude, and ξ′(0) = ξ̇′(0) = 0 (the dot denotes the derivative with respect to time). We introduce
nondimensional variables as follows: x′ = xH, z′ = zH, L′ = LH, d′ = dH, ξ′(t′) = ξ(t)H, t′ = t

√
H/g,

Φ′ = H
√
gHΦ(x, z, t), and p′ = pρgH. Here p(x, z, t) is the hydrodynamic pressure, g is the free-fall acceleration,

and Φ is the flow velocity potential. Primed variables are dimensional, and unprimed variables are nondimensional.
Within the framework of the linear theory of potential ideal incompressible flow, the equations of motion,

the boundary conditions, and the initial data in the nondimensional variables are written as

Φxx + Φzz = 0, (x, z) ∈ Ω; (1)

Φx = 0 for x = ±L, z ∈ [−d, 0]; (2)

Φz = 0 for z = −1; (3)

Φz = ξ̇(t) for z = −d, |x| < L; (4)

Φtt + Φz = 0 for z = 0, |x| > L; (5)

Φ→ 0 as |x| → ∞; (6)

Φ = Φt = 0 for t = 0. (7)

Here Ω = (((−∞,−L)∪ (L,∞))× [−1, 0])∪ ([−L,L]× [−1,−d]). Equations (1)–(7) form the initial boundary-value
problem for the flow velocity potential.

Method of Decomposition. Volterra System. The solution of problem (1)–(7) is constructed by the
method of decomposition. The flow region is divided into three parts (Fig. 1): the left exterior region I (x < −L),
the interior region II (−L < x < L), and the right exterior region III (x > L).
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The problem is symmetric about the Oz axis, and the line x = 0 is a streamline:

Φx = 0 for x = 0. (8)

Therefore, it suffices to solve problem (1)–(7) for two regions: (x, z) ∈ [0, L] × [−1,−d] (interior problem) and
(x, z) ∈ [L,∞) × [−1, 0] (exterior problem). On the line of contact of the two regions, the continuity condition
for the horizontal velocity component and the velocity potential should be satisfied. Let, on the contact line, the
distribution of the horizontal velocity is described by a certain function f(z, t):

Φx = f(z, t) for x = L, z ∈ [−1,−d]. (9)

Equations (1), (3), (4), (8), and (9) form the interior boundary-value problem for the velocity potential Φ
with the Neumann boundary conditions, Eqs. (1)–(3), (5)–(7), and (9) form the exterior problem. The solution of
the Neumann problem (1), (3), (4), (8), (9) exists if the following condition is satisfied:

−d∫
−1

f(η, t) dη + ξ̇(t)L = 0. (10)

Solving the interior problem by the Fourier method, we find the velocity potential ΦI(x, z, t) in the form of
the series

ΦI(x, z, t) =
ξ̇(t)
2d1

[(z + 1)2 − x2] + α0(t) +
∞∑
n=1

cosh (λnx)
λn sinh (λnL)

fn(t) cos (λn(z + 1)), (11)

where λn = πn/d1, d1 = 1− d, and fn are the coefficients of the Fourier expansion of the horizontal velocity f(z, t)
in the complete orthogonal system of functions cos (λn(z + 1)), i.e.,

f(z, t) =
∞∑
k=0

fk(t) cos (λk(z + 1)). (12)

From the condition (10) we obtain f0(t) = −(L/d1)ξ̇(t).
We change the variable x = x̃+L. In the variables x̃ and z the right exterior region moves to the left by L,

and the equations do not vary.
For x̃ > 0, the velocity potential ΦII(x̃, z, t) is sought as the sum of two terms ϕ0 and ϕ, where ϕ0 satisfies

condition (9). Condition (5) is replaced by the following:

ϕ0 = 0 for x̃ > 0, z = 0.

For ϕ, condition (9) is replaced by the homogeneous condition

ϕx̃ = 0 for x̃ = 0, (13)

and the free-surface condition becomes

ϕtt + ϕz = −(ϕ0)z(x̃, z, t) for x̃ > 0, z = 0.

Similarly to the interior problem, the solution for ϕ0 is represented as the series

ϕ0 = −
∞∑
n=0

2
µn

exp (−µnx̃)βn(t) cos (µn(z + 1)),

where µn = (π/2)(2n+ 1) and

βn(t) =

−d∫
−1

f(η, t) cos (µn(η + 1)) dη (n = 0, 1, 2, . . .). (14)

To find the function ϕ(x̃, z, t), we continue it symmetrically about the x̃ = 0 axis. Then, the nonpenetration
condition (13) on this line is satisfied automatically, and the free-surface condition becomes

ϕtt + ϕz = −(ϕ0)z(|x̃|, z, t) for z = 0. (15)

By the direct Fourier transform, system (1), (3), (6), (15) is reduced to the system

ϕFzz − ζ2ϕF = 0,
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ϕFtt + ϕFz = hF (ζ, z, t) for z = 0,

ϕFz = 0 for z = −1,

where

hF = −
∞∫
−∞

(ϕ0)z(|x̃|, z, t) exp (−iζx̃) dx̃ = −4
∞∑
n=0

(−1)n
µn

µ2
n + ζ2

βn(t).

Solving this system with zero initial data and using the inverse Fourier transform, we obtain

ϕ = − 2
π

∞∫
−∞

t∫
0

sin (ω(t− τ))
ω

cosh (ζ(z + 1))
cosh ζ

{ ∞∑
n=0

(−1)n
µnβn(τ)
µ2
n + ζ2

}
exp (iζx̃) dτ dζ,

where ω2 = ζ tanh ζ. Using (14) and the table of series from [7], it is possible to show that the expression in angular
brackets is equal to

1
2

−d∫
−1

f(η, τ)
cosh (ζ(η + 1))

cosh ζ
dη.

We finally have

ΦII = −
∞∑
n=0

2
µn

exp (−µnx̃) cos (µn(z + 1))βn(t)

− 1
π

t∫
0

∞∫
−∞

−d∫
−1

f(η, τ)
cosh (ζ(η + 1))

cosh ζ
dη

sin (ω(t− τ))
ω

cosh (ζ(z + 1))
cosh ζ

exp (iζx̃) dζ dτ. (16)

On the line x = L, the velocity potential varies continuously, i.e., ΦI = ΦII. Equating expressions (11)
and (16) on the line x = L, we obtain the following equation for the function f(z, t):

ξ̇(t)
2d1

[(z + 1)2 − L2] + α0(t) +
∞∑
n=1

fn(t)
λn tanh (λnL)

cos (λn(z + 1)) = −2
∞∑
n=0

1
µn

cos (µn(z + 1))βn(t)

− 1
π

t∫
0

∞∫
−∞

−d∫
−1

f(η, τ)
cosh (ζ(η + 1))

cosh ζ
dη

sin (ω(t− τ))
ω

cosh (ζ(z + 1))
cosh ζ

dζ dτ. (17)

Substituting series (12) for the function f(z, t) into (14) and (17), we obtain

βn(t) =
∞∑
k=0

fkTnk,

−d∫
−1

f(η, t)
cosh (ζ(η + 1))

cosh ζ
dη =

∞∑
k=0

fk(t)Dk(ζ),

where
Tnk = (−1)k

2
π

sin
(
π

(2n+ 1)d1

2

) 2n+ 1
(2n+ 1)2 − (2k/d1)2

,

(18)

Dk(ζ) = (−1)k
ζ

ζ2 + (πk/d1)2

sinh (ζd1)
cosh ζ

.

The system {cos (λn(z + 1))}∞n=0 is complete and orthogonal. Multiplying Eq. (17) by cos (λm(z + 1)) and
integrating over z from −1 to −d, we obtain an infinite system of integral equations, which can be written in matrix
form

Af(t) +

t∫
0

S(t− τ)f(τ) dτ = F (t),

(19)

α0(t) = − 1
1− d

(
Pf(t) +

t∫
0

S0(t− τ)f(τ) dτ

)
+ F0(t).
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Here A = {Akm}∞k,m=1 and S = {Skm}∞k,m=1 are symmetric matrices with the elements

Akm =
d1

2
1

λm tanh (λmL)
δkm + 2

∞∑
n=0

TnkTnm
µn

, Skm(t) =
1
π

∞∫
−∞

sin (ωt)
ω

Dk(ζ)Dm(ζ) dζ,

P =
{

2
∞∑
n=0

TnkTn0

µn

}∞
k=1

, F0(t) = ξ̇(t)
(LP00

d2
1

− d2
1 − 3L2

6d1

)
+
L

d2
1

t∫
0

ξ̇(τ)S00(t− τ) dτ,

f = {fk}∞k=1, S0 = {Sk0}∞k=1, F = {Fm}∞m=1

(δkm is the Kronecker delta). The components of the vector F (t) are calculated from the formulas

Fm(t) = ξ̇(t)
( L
d1
P0m + (−1)m+1

( d1

πm

)2)
+
L

d1

t∫
0

ξ̇(τ)S0m(t− τ) dτ.

Thus we obtain an infinite system of Volterra integral equations of the second kind for determining the coefficients
of the Fourier expansion of the horizontal velocity on the line of contact of the interior and exterior regions.

Analysis of the System. We note that in expression (18) for Tnk, the denominator contains a difference
that vanishes for a certain value of d (we call it the critical draught d∗). Nevertheless, by virtue of the limits

lim
d→d∗(k)

sin2((π/2)d1(2n+ 1))
(2n+ 1)2 − (2k/d1)2

= 0 (k 6= m),

lim
d→d∗(k)

sin2((π/2)d1(2n+ 1))[
(2n+ 1)2 − (2k/d1)2

]2 =
(πk)2

4(2n+ 1)4
(k = m),

the terms of the series entering into Skm(t) have no singularities.
The kernels of system (19) are integrals over the entire numerical axis. By virtue of the evenness of the

integrand functions, these integrals can be replaced by double integrals only on the positive semiaxis.
We note some properties of the functions Skm(t). First, with increase in one the subscripts, the functions

Skm(t) decay, and beginning with a certain M (|Skm| 6 ε at k,m > M), we can set Skm ≡ 0.
Second, Skm(t) are symmetric about their subscripts. We introduce the functions

Sk(t) =
2
π

∞∫
0

sin (ωt)
ω

1
ζ2 + (πk/d1)2

sinh 2(ζd1)
cosh 2 ζ

dζ,

in terms of which the elements of the matrix Skm at k 6= m are expressed by the formula

Skm(t) =
(−1)k+m

k2 −m2

(
k2Sk(t)−m2Sm(t)

)
.

From the last formula it follows that we do not need to calculate (M2 +M)/2 functions Skm(t) (for k 6 m by virtue
of symmetry of the matrix) but it suffices to calculate only M + 1 functions Skk (k = 0, 1, . . . ,M) and M functions
Sk (k = 1, 2, . . . ,M), i.e., 2M + 1 functions.

Third, as t→∞, the functions Skm(t) behave as O(t−4). Because Skm(t) are expressed linearly in terms of
Sk(t), it suffices to show the validity of this statement for the functions Sk. We denote

Gk(ζ) =
2
π

1
ζ2 + (πk/d1)2

sinh 2(ζd1)
cosh 2 ζ

and change the variable ω2(ζ) = ζ tanh ζ. In the neighborhood of zero, ω behaves as ζ, and at infinity, it behaves
as
√
ζ. Let gk(ω) = Gk(ζ(ω)), and, hence,

Sk(t) =

∞∫
0

sin (ωt)
ω

Gk(ζ) dζ =

∞∫
0

gk(ω)
ωω′

sin (ωt) dω (20)

(prime denotes differentiation with respect to ζ).
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Fig. 2

We denote h(ω) ≡ gk(ω)/(ωω′) and consider two extreme cases. In the neighborhood of zero, we have
h(ω) ≈ 2d4

1ω/(π
3k2), i.e., h(ω) = O(ω) and h′(0) = 2d4

1/(π
3k2) < ∞. In the neighborhood of the infinite point

h(ω) ≈ (4/π)ω−4, i.e., h(ω) = O(ω−4) and h(N)(ω) = O(ω−(N+4)) at N > 1.
Integrating (20) by parts and taking into account the behavior of the function h(ω) and its derivatives, we

show that

Sk(t) =
1
t4

∞∫
0

sin (ωt)h(4)(ω) dω = O(t−4) as t→∞.

Beginning from a certain time T such that |Sk(t)| 6 ε for t > T , we can set Sk(t) ≡ 0 for t > T .
Calculations for the matrix S(t) for 0 6 t 6 20 (step equal to 0.1) and draught d = 0.4 show that for t > 10,

we can set S(t) ≡ 0 (Fig. 2). From Fig. 2 it can be seen that the amplitude decreases with increase in matrix
element number.

Numerical Solution. To determine the vector f , we solve the Volterra system (19) by the reduction
method: f = {fk(t)} for k = 1, 2, . . . ,M and fk ≡ 0 for k > M . The integrals are approximated by the trapezoid
rule. Taking into account that at the initial time, f(z, 0) = 0, we obtain the computational formulas

f(0) = 0, f(N∆τ) = A−1F (N∆τ)−A−1
N−1∑
n=1

S((N − n)∆τ)f(n∆τ),

α0(N∆τ) = − 1
1− d

(
Pf(N∆τ) +

N−1∑
n=1

S0((N − n)∆τ)f(n∆τ)∆τ
)

+ F0(N∆τ).

From analysis of numerical calculations for a body with d = 0.4 moving under the law ξ(t) = (1 −
exp (−t)) sin t, it follows that after a certain time, the solution becomes almost harmonic in time with period
2π.

In the neighborhood of the angular point of the body (L,−d), the velocity potential Φ behaves as O(r2/3),
where r2 = (x− L)2 + (z + d)2. The function f(z, t) is a horizontal velocity on the line x = L, and, hence, it has a
singularity of the form (z + d)−1/3 as z → −d− 0. It is easy to show that with increase in number, the coefficients
fn(t) should decay as O(n−2/3). For large values of n, the quantities fn(0.2) (see Fig. 3) behave as Cn−2/3, where
C = 0.265621. In Fig. 3, the points show the values of fn(0.2) for n = 1, 2, . . . , 50, and the curves are the functions
±Cn−2/3. It is obvious that the calculation results are in good agreement with theoretical data.

Hydrodynamic Force and Pressure. At the bottom of the body, the pressure is calculated from the
formula pb(x, t) = −ξ(t)− (ΦI)t(x,−d, t). Here the first term is the hydrostatic pressure component, and the second
is the dynamic component. The expression for pressure does not contain a constant part that corresponds to the
buoyancy force because this part is compensated for by gravity. From the expression for the dynamic pressure
component
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Fig. 3

Fig. 4

(ΦI)t(x,−d, t) =
ξ̈(t)
2d1

(d2
1 − x2) + α̇0(t) +

M∑
n=1

(−1)n

λn

cosh (λnx)
sinh (λnL)

ḟn(t)

it follows that the derivatives of the functions fn(t) need to be known. These derivatives are approximated by
central differences, except for the derivative at zero, which is approximated by the forward difference. The force
exerted on the body by the fluid is equal to the integral of pressure over the bottom of the body.

We performed numerical calculations of the force for two laws of body motion: ξ(t) = (1 − exp (−t)) sin t
(Fig. 4a) and ξ(t) = (1 − exp (−t))3 sin t (Fig. 4b). Figure 4 shows time dependences of hydrodynamic forces [Fd
is the dynamic force component, Fhs is the hydrostatic force component, and Ff is the total force (sum of the
hydrostatic and dynamic components)]. We note that the difference is observed only at the initial stage, where the
equations of motion have different smoothness and the force is proportional to the second derivative of the motion
function.

Thus, the method described above is stable and can be used to describe the action of a fluid on a floating
body.
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